

PM-Wire™ Magnets: Thinking Outside the Block!

Advanced Magnetics & Manufacturing

General Presentation for Public Distribution

Our Company

World-Class Magnet Technologies

AML was founded on principle of developing world-class magnet technologies that solve complex application needs.

✓ Significant IP and software portfolio, trade secrets, and knowhow for designing and producing permanent magnets.

Magnet Technologies + Advanced Manufacturing

AML combines its magnet innovation with advanced manufacturing capabilities.

✓ AML's team has decades of experience with advanced manufacturing solutions, including leading significant growth transitions.

Funded to Scale - \$15M to date

AML has contributed \$8.5M along with \$1M from strategic sources combined with \$5.5M from the U.S. federal government towards commercialization.

✓ AML has drawn significant interest from the REE supply chain, private investors, and the federal government to solve the magnet problem.

AML facilities located on Florida's Space Coast Melbourne, Florida

AML expansion plans include additional facilities in Florida and co-location with strategic partners

Leadership

Management

Wade Senti, President, Director

- Lead all of AML's major transactions and supported \$10M + strategic capital to date, responsible for corporate, financial, customer relationships, and strategic affairs.
- 15+ years of experience in finance, transactions, and business strategy.
- Bachelor of Science in Accounting (BSAc) from the University of Florida.

Philippe Masson, Chief Technology Officer

- Co-inventor of most of AML's game-changing permanent magnet technologies and responsible for leading AML technology development and customer programs.
- 20+ years of experience developing superconducting applications and permanent magnet technologies.
- Ph.D. in Electrical Engineering from the Université Henri Poincare, Nancy, France.

Board of Directors

Mark Jensen

- -Entrepreneur and businessperson who has founded several companies.
- -Chairman and CEO of American Resources Corporation (NASDAQ: AREC) a next generation producer of raw materials.
- Mr. Jensen previously held positions in the financial services and investment sector.

Bill McCollum

- Dentons, Partner Public Policy and Regulation.
- Former Florida Attorney General.
- Retired U.S. Congressman.
- Retired commander in the U.S. Naval Reserves.

Raj Gutta

- Serial entrepreneur, investor, and medical doctor.
- University of Michigan undergrad and medicine.

Tom Turner

- -40+ years developing, operating and exiting high-tech businesses.
- -Companies included Wang Canada Limited, Datamax Corp. and Itronix.
- -Currently active in a number of early-state companies and a partner / developer of a new sustainable City in Costa Rica.

Marshall Heard

- The Boeing Company (ret.), Ran a \$4B Division.
- Engineering, product development, and operations.
- Air Force Strategic Air and Systems Command.

Vernon Prince

- -30 + years, entrepreneur, executive
- Multiple advanced manufacturing operations
- -Luminar Technologies, JDS Uniphase
- -Founded/Exited OPA

Recent & On-Going Strategic Engagements

U.S. Department of Energy / ARPA-E ASCEND

- ✓ 2021 2025: Project Title: "High Power Density Dual-Rotor Permanent Magnet Motor with Integrated Cooling and Drive for Aircraft Propulsion."
- ✓ Patented dual-rotor based on non-sintered PM-Wire™. Specifications provided by large U.S. aerospace and defense company.
- ✓ Program objective develop magnet and stator technology for lightweight and efficient all-electric powertrain that would help enable net-zero carbon emissions in singaisle 150-200 passenger commercial aircraft.

U.S. Department of Defense / Defense Innovation Unit

- ✓ 2020 2022: Provided funding for the design, build and commissioning of innovative Pilot Manufacturing Process.
- ✓ Program objective design, build and initial commissioning of an advanced PM-Wire™ Pilot Manufacturing Line for production of non-sintered magnets.

U.S. Defense & Aerospace Company

- ✓ **2020 Present:** Provided funding for expanded development work with AML's magnet technology and partnered on application development.
- ✓ Development work led to magnets with "continuously changing magnetization direction" (single-piece Halbach array) using bonded NdFeB material compositions.
- ✓ New collaborations for sintered magnet innovation around AML PM-360 technology for developing and refining manufacturing process.

U.S. Department of Defense / Defense Logistics Agency

- ✓ 2022 Present: Project Title: "Development and Qualification of Domestically Sintered Neodymium Iron Boron (NdFeB) Magnets for Weapons Platforms."
- √ The objective was to qualify sintered PM-Wire[™] magnets and to design, build and commission advanced manufacturing for sintered PM-Wire[™].
- ✓ Program objective develop sintered PM-Wire[™] magnet configurations using NdFeB compositions acquisition of equipment and facilities upgrades.
- ✓ Other Collaborations: qualification of sintered magnets for defense and supply chain integration for a domestic supply chain for defense.

U.S. Naval Nuclear Laboratory

✓ **2021 - Present:** Designed, commissioned and tested and superconducting / permanent magnet bearing system and other work and projects related to permanent magnets applications and sourcing/qualification.

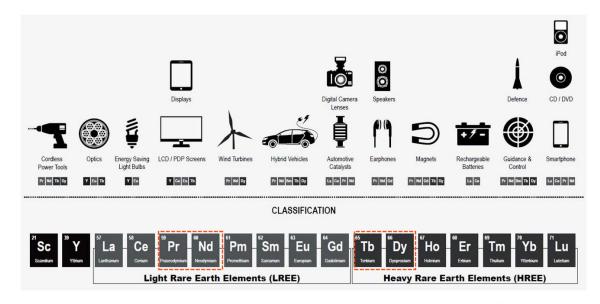
Our Customer Base

Applications development – We've done 100s of design studies to date

Motor and Generator Applications

AML is working with major motor and generator firms to unlock new performance value and smart supply chain strategies.

Consumer Electronic Applications


Data storage and other emerging applications are driven by the Al and quantum revolution – need for alternatives is a rapidly growing market.

Defense and Aerospace Applications

AML is engaged with firms developing motor and generator applications for defense.

Other Applications

Medical, robotics, automotive, and others.

Source: China Water Risk report, "Rare Earths: Shades Of Grey – Can China continue to fuel our clean and smart future?" (June 2016)

We are working to remove the constraints of a Neodymium, Praseodymium, Terbium and Dysprosium driven magnet supply chain.

Our Competitive Difference

What separates AML from the rest?

To compete in the United States with global market – you must be able to produce high volume, cost-competitively, and add product value. *AML can do all three*.

Ideal magnetic distribution, single-piece "Halbach Arrays", long-lengths with the ability to design in shapes and curvatures that provide applications expanded benefits, including building a magnet around less REE (or non-REE) material attributes.

Λ	MП	ı
А	IVI	ш

Shapes, sizes, lengths, different magnetizations

Equipment & Capabilities

Automated by design, incorporating standard equipment

ManufacturingHigh-rate, high yield, automated by design, flexible, and lower capex

All magnet materials REE, Non-critical REE, REE-Free

Other Magnet Mfg's

Block magnets, magnetized in one direction

Standard equipment for sintered manufacturing with some automation

Laborious, rigid, non-interchangeable, higher capex

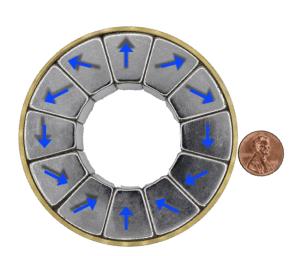
REE - Neodymium Iron Boron REE - Samarium Cobalt

Conventional Sintered Magnets

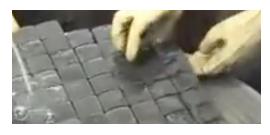
Supply Chain

Magnet design

AML PM Magnets


The Industry Today – NdFeB Sintered Magnets

AML


Other Magnet Manufacturers

NdFeB are usually produced as uniformly magnetized blocks.

- ✓ Magnets need to be cut from blocks
- ✓ Designers are limited to small magnets with single magnetization directions
 - Design space constraints for the applications
 - Need to combine multiple magnets to achieve variable magnetization directions (expensive tooling)
 - Need high-grade magnets to prevent demagnetization
- ✓ "Single size" fits all approach

Magnet blocks during manufacturing

COTS magnets

PM-Wire[™] Manufacturing Process – Powder-In-Tube Process

- (1) Powder is placed in a cylindrical or square tube
- (2) Powder is pre-aligned using a magnetic field
- (3) Filled tube is sized, leading to compression and cross-section reduction
- (4) Swaging, rolling to further reduce cross-section, increase density, and obtain the desired shape
- (5) Sintering-Annealing-Aging cutting, grinding, coating
- (6) Final magnetization

PM-Wire™ Manufacturing

AML

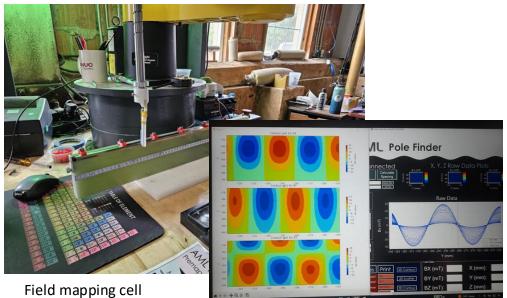
PM-Wire Magnet Manufacturing

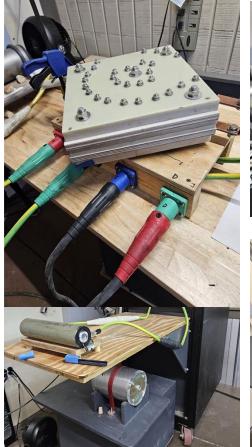
Example of High-Rate Magnets Production Line
Partially funded by U.S. Department of Defense / Defense Innovation Unit

Εŝ

Sintered Magnets Lab
Partially funded by U.S. Department of Defense / Defense Logistics Agency

Sintering furnace


Magnetization



AML has developed custom pre-alignment and magnetization fixtures to achieve useful

magnetization configurations

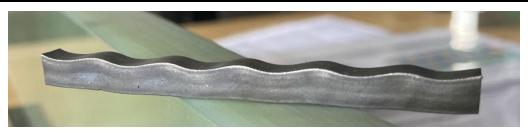
- ✓ Axial for straight and curved magnets
- ✓ Radial for rings and curved magnets
- ✓ Uniform for long straight magnets and large blocks
- ✓ PM-360 (single piece multipole)
 - Radial inward and outward flux
 - Axial flux

Example of custom magnetization fixtures

gnet Lab, Inc. All rights reserved worldwide.

PM-Wire™ Process for Sintered Magnets

Only 1 step requires an inert environment Flexible shapes


- ✓ Long straight magnets
- ✓ Curved magnets

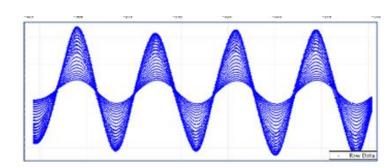
Flexible magnetization directions

- ✓ Radial
- ✓ Axial
- ✓ Continuously changing (PM-360™)

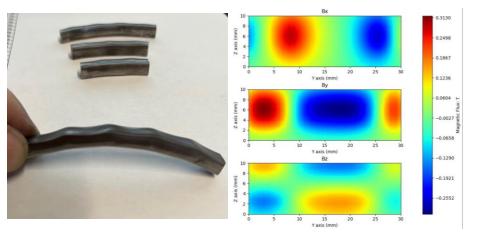
Opens the design space for applications

✓ Applications no longer constrained to small uniformly magnetized block magnets

6-pole single-piece NdFeB magnet (PM-360™)



Why PM-Wire Magnets Matter?


Flexibility in magnet shape and magnetization direction opens the design space for the applications and <u>smart design</u>:

- ✓ Minimize demagnetization
 - Allows operation at higher temperatures
 - Enables the use of lower coercivity magnets (<u>less REEs, nor Heavy REEs</u>)
 - Enables new designs and topologies
- ✓ Generate multiple poles from single magnets
 - Significantly reduce the number of parts/magnets
 - Simplify assembly: no tooling needed
 - Enhance the field magnitude
 - Produce sinusoidal fields (no space harmonics)
 - Enable the use of lower Br magnets

PM-Axial rotor configuration: demagnetization field < 0.15 T in the rotor magnets!

Example of curved sintered PM-360™ magnets

Example of Use of PM-Axial™ Magnets – Global Electrical Machine Manufacturer AML

Baseline Design

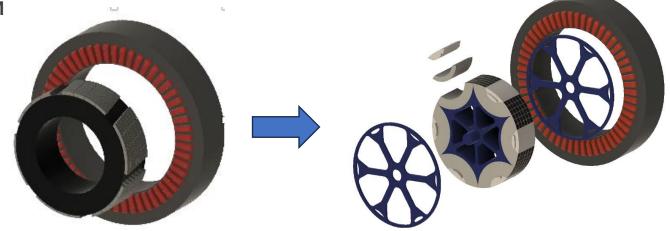
Torque - 311 Nm; Efficiency - 98.6%; Power - 375 kW; RPM

- 11,500

Magnet Material: N48SH NdFeB

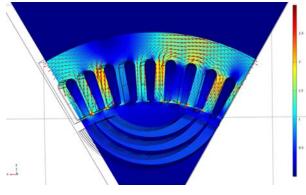
Maximum Operating Temperature: 100 C

Critical REEs: NdPr and Dysprosium


PM-AXIAL™ Impact – Significant Improvement In Performance

Solution

- ✓ Retrofit solution replaced conventional surface-mounted magnets topology with PM-AXIAL™
- ✓ No change to stator
- √ Same magnet N48SH NdFeB alloy


PM-Axial™ Performance Improvement

- √ Field enhancement
- ✓ Increase in operating temperature to over 150 C
- ✓ Reduction in rotor overwrap thickness
- √ 20% reduction in mass by removing the iron

Baseline Design – Conventional north-south pole rotor configuration

PM-AXIAL™ - Provides very-low demagnetization field (~ 1/10 of conventional north-south pole configuration)

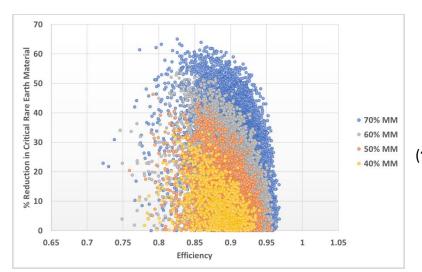
Magnetic field distribution in 1 pole of the motor

Example of Use of PM-Axial™ Magnets – Global Electrical Machine Manufacturer AML

PM-AXIAL™ Impact – Reduced Critical REE

Solution

- ✓ Retrofit solution replaced north-south rotor pole topology with PM-AXIAL™
- ✓ No change to the stator
- √ (Mischmetal / NdPr) NdFeB alloy
 - Br and Hci (@ 120 C) = 1.01 T and 2.85 kGauss


PM-Axial™ Performance

- ✓ Equivalent torque and efficiency
- √ 37% reduction in critical REE (NdPr) and no dysprosium
- √ 11% reduction in active mass

NdPr - ~ + \$80 per kilogram

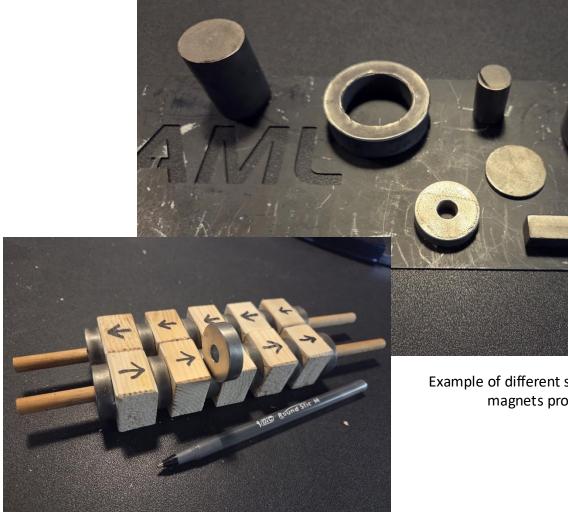
Mischmetal - \$lower per kg
(Cerium, Lanthanum, Neodymium,
Praseodymium)

Mischmetal reduces the cost of REE separation and can provides REE provenance of NdPr oxides

Example of Reduction in critical REE materials vs. efficiency

PM-AXIAL[™] - Provides very-low demagnetization field (~ 1/10 of conventional north-south pole configuration)

AML's Other Sintered Magnets


Conventional magnet shapes

✓ Blocks, cylinders, "donuts", rings

Uniform magnetization

- ✓ Radial
- ✓ Axial
- ✓ Transverse

Produced in long lengths close to final cross-section or close to final shape


Example of different sizes and shapes NdFeB magnets produced at AML

PM-Wire[™] - Material Enabler

Materials

- ✓ SmFeN
- ✓ NdFeB
- ✓ MnBi
- ✓ MnAIC
- ✓ FeN
- ✓ Other

PM-UNIFORM™ Magnets

PM-360™ Magnets

Engineering magnets

- ✓ Custom shapes
- ✓ Custom magnetization direction
- ✓ Strong: strength of Stainless steel
- ✓ No cracking, no chipping
- ✓ No corrosion (magnets sealed in jacket)

PM-360[™] Axial Magnetization

Example of PM-360™ Applications in Motors

Motor Specifications

Collaboration with the Oak Ridge National Laboratory
U.S. Department of Energy: Power - 58 kW; RPM - 20,000

PM-360™ Impact – EV Motor With Non-Sintered Alloy Solution

- ✓ Retrofit solution replacing Halbach rotor topology with PM-360™
- ✓ Replacing ~2,750 NdFeB thin sintered magnets with 8 PM-360™ rings
- ✓ SmFeN
 - Br and Hci (@ 80 C) = 0.9 T and 14 kOe

PM-360™ Performance

- ✓ Equivalent torque and efficiency
- ✓ Significantly reduce part count and complexity of assembly
- ✓ Lower eddy current losses
- ✓ A fraction of the cost compared to sintered complex Halbach array design

OAK RIDGE National Laboratory

PM-360™ Impact – Enable the use of SmFeN

Torque - 311 Nm; Efficiency - 98.6%; Power - 375 kW; RPM - 11,500

Maximum Operating Temperature: 100 C

Solution

- ✓ Retrofit solution replaced north-south rotor pole topology with PM-360™
- ✓ No change to motor stator
- ✓ No Critical REE Samarium Iron Nitride (SmFeN) alloy
 - Br and Hci (@120C) = 0.88T and 11.5 kGauss @120C
- ✓ Replace 168 sintered N48SH magnets with **10 PM-360[™] rings**

PM-360™ Performance

- √ Equivalent torque and efficiency
- √ 10% reduction in active mass
- ✓ No NdPr or Dy

PM-360[™] - Helical

PM-360™ - Ten (10) Helical Rings replacing 168 sintered magnets

Qualification of "Non-Sintered" PM-360™

PM-360[™] - "Single-piece Halbach Array"

Straight, ring or helical magnets with "Continuously Changing Magnetization Direction"

Materials

NdFeB - NeoMagnequench, Aichi Metals SmFeN - Sumitomo Metal Mining, Nichia MnBi - AML

Lower Cost Assemblies

Reduced part count Easy to assemble

Stability

Tube filled in an inert environment: the powder is sealed in tubes before compaction: → No Corrosion **Mechanical strength of Stainless Steel** Magnets can deform without cracking or breaking Magnets cannot chip PM-Wire process ideal for mass production

Example of PM-360™ Magnet assembly for axial flux motor.

AML is spearheading several supply chains driven by customer demand

	NdFeB	SmFeN	MnBi
Magnet Material	Neodymium, Praseodymium, Iron, Boron	Samarium Iron Nitride	Manganese Bismuth
Commercialization Customers	Existing magnet market users	Motor and generator companies	Motor and generator companies
AML Sourcing	U.S. recyclers and global oxides sourcing	Collaboration with multinational companies in Japan	Bismuth ingots, Manganese flake
Final processing	Strategic partners (metals and alloys)	None	Confidential collaboration
Other Comments	New sources coming online an available increasingly in coming years	AML has strategic plans for sourcing and separating Samarium ex-China.	AML has several pathways for commercializing MnBi materials and sourcing raw materials ex-China.

AML invites new opportunities for strategic relationships for sourcing oxides, metals, and alloys.

Our Plans

AML "Warp Speed Expansion"

Existing Footprint

10,000 square feet – Alloys and Magnets < 1,000 MTPY

- Low-rate production, advanced applications prototyping, materials & magnet R&D.
- ✓ Strategic sourcing with suppliers of REOs, alloys, and magnet materials.

Stage II and Stage III

50,000 + square feet - Metals, Alloys, and Magnets - Commercial MTPY

- ✓ Stage II: Scaled magnet manufacturing (proposal to DPA Title III).
- ✓ Stage III: Expansion with metals and alloys production for supporting magnet making.
- ✓ AML may **spin-out new company** for commercial manufacturing and strategic partnerships with REO suppliers and magnet material producers.

Stage IV – AML 10x

Multiple Sites – Co-Location with Suppliers and Customers

- ✓ Global expansion with AML PM-WireTM manufacturing partnerships with strategic customers and suppliers.
- ✓ AML will be fully integrating material development and scaled in-house compositions for novel magnet materials as well as NdPr.

"Source to Magnet Supply Chain" **Recycling / Mining** Concentration Extract Ore Ore to Concentrate Separation Metals Concentrate to Metal Metal Oxide to Metal Oxide Alloying **Magnet-Making** Craft into Magnets Combine Metals **AML**

AML intends to expand capabilities organically to scale from metals to magnets.

Let's Partner

AML - The Future of Magnetics

REE supply partnerships

Let's build a diversified globally supply chain for value-add magnet products

Let's build better products with magnets

Innovation for improved applications through smart magnet designs

Enabling new magnet materials for a tech revolution

AML is leading the transition to non-REEs and new materials for applications

AML-Enabled.com

Corporate Address

Advanced Magnet Lab, Inc. 1604 S Harbor City Blvd. Melbourne, FL 32901 media@amlsm.com

Management

Wade Senti, President wsenti@amlsm.com 321,501,6660

Philippe Masson, CTO pmasson@amlsm.com 321.728.7543

"Magneto"Making Better Magnets
USA